Robust Multiple Kernel K-means Using L21-Norm

نویسندگان

  • Liang Du
  • Peng Zhou
  • Lei Shi
  • Hanmo Wang
  • Mingyu Fan
  • Wenjian Wang
  • Yi-Dong Shen
چکیده

The k-means algorithm is one of the most often used method for data clustering. However, the standard k-means can only be applied in the original feature space. The kernel k-means, which extends k-means into the kernel space, can be used to capture the non-linear structure and identify arbitrarily shaped clusters. Since both the standard k-means and kernel k-means apply the squared error to measure the distances between data points and cluster centers, a few outliers will cause large errors and dominate the objection function. Besides, the performance of kernel method is largely determined by the choice of kernel. Unfortunately, the most suitable kernel for a particular task is often unknown in advance. In this paper, we first present a robust kmeans using `2,1-norm in the feature space and then extend it to the kernel space. To recap the powerfulness of kernel methods, we further propose a novel robust multiple kernel k-means (RMKKM) algorithm that simultaneously finds the best clustering label, the cluster membership and the optimal combination of multiple kernels. An alternating iterative schema is developed to find the optimal value. Extensive experiments well demonstrate the effectiveness of the proposed algorithms.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Non-Greedy L21-Norm Maximization for Principal Component Analysis

Principal Component Analysis (PCA) is one of the most important unsupervised methods to handle highdimensional data. However, due to the high computational complexity of its eigen decomposition solution, it hard to apply PCA to the large-scale data with high dimensionality. Meanwhile, the squared L2-norm based objective makes it sensitive to data outliers. In recent research, the L1-norm maximi...

متن کامل

Multiple Kernel Learning in the Primal for Multi-modal Alzheimer's Disease Classification

To achieve effective and efficient detection of Alzheimer's disease (AD), many machine learning methods have been introduced into this realm. However, the general case of limited training samples, as well as different feature representations typically makes this problem challenging. In this paper, we propose a novel multiple kernel-learning framework to combine multimodal features for AD classi...

متن کامل

Non-sparse Multiple Kernel Learning

Approaches to multiple kernel learning (MKL) employ l1-norm constraints on the mixing coefficients to promote sparse kernel combinations. When features encode orthogonal characterizations of a problem, sparseness may lead to discarding useful information and may thus result in poor generalization performance. We study non-sparse multiple kernel learning by imposing an l2-norm constraint on the ...

متن کامل

Recovery of Corrupted Multiple Kernels for Clustering

Kernel-based methods, such as kernel k-means and kernel PCA, have been widely used in machine learning tasks. The performance of these methods critically depends on the selection of kernel functions; however, the challenge is that we usually do not know what kind of kernels is suitable for the given data and task in advance; this leads to research on multiple kernel learning, i.e. we learn a co...

متن کامل

Primal and dual robust counterparts of uncertain linear programs: an application to portfolio selection

This paper proposes a family of robust counterpart for uncertain linear programs (LP) which is obtained for a general definition of the uncertainty region. The relationship between uncertainty sets using norm bod-ies and their corresponding robust counterparts defined by dual norms is presented. Those properties lead us to characterize primal and dual robust counterparts. The researchers show t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015